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Abstract: Team coordination consists of both the dynamics of team member 
interaction and the environmental dynamics to which a team is subjected. 
Focusing on dynamics, an approach is developed that contrasts with traditional 
aggregate-static concepts of team coordination as characterized by the shared 
mental model approach. A team coordination order parameter was developed to 
capture momentary fluctuations in coordination. Team coordination was 
observed in three-person uninhabited air vehicle teams across two experimental 
sessions. The dynamics of the order parameter were observed under changes of 
a team familiarity control parameter. Team members returned for the second 
session to either the same (Intact) or different (Mixed) team. “Roadblock” 
perturbations, or novel changes in the task environment, were introduced in 
order to probe the stability of team coordination. Nonlinear dynamic methods 
revealed differences that a traditional approach did not: Intact and Mixed team 
coordination dynamics looked very different; Mixed teams were more stable 
than Intact teams and explored the space of solutions without the need for 
correction. Stability was positively correlated with the number of roadblock 
perturbations that were overcome successfully. The novel and non-intuitive 
contribution of a dynamical analysis was that Mixed teams, who did not have a 
long history working together, were more adaptive. Team coordination 
dynamics carries new implications for traditional problems such as training 
adaptive teams. 

Key Words: order parameter, control parameter, perturbations, stability, long-
range correlation.  

TEAM COORDINATION DYNAMICS 

There are many examples of tasks that are too complex to be accom-
plished by an individual working alone and, instead, require a team that is 
composed of people with different skills. Simply assembling a collection of 
highly trained experts is not enough, however, because teams have to coordinate 

                                                 
1 Correspondence concerning this paper should be addressed to Jamie C. Gorman, 
Cognitive Engineering Research Institute, 5810 S. Sossaman Rd. #106, Mesa AZ, 85212. 
E-mail: jgorman@cerici.org 

265 



 
 
 
 
 
 
 
 
266                                     NDPLS, 14(3), Gorman et al. 

their activities. One example is a surgical team that consists of highly trained 
team members, including a chief and assisting surgeon, an anesthesiologist, and 
circulating and scrub nurses. No matter how much they know as individuals, 
surgical teams fail if they do not interact effectively as a team. Nevertheless, 
traditional explanations of team coordination have focused on the aggregate 
knowledge of a team’s members. 

Teams must not only interact effectively during routine procedures, but 
they must also be able to adjust their coordination to meet the changing demands 
of their environment. If the surgical team always coordinates in a static, 
unchanging fashion, regardless of how appropriate it is for a particular situation, 
then the result is potentially fatal. Teams must be able to change their 
coordination to meet the exigencies of the current situation. Nevertheless, team 
coordination has traditionally been measured with variables such as mean 
behavior that do not capture the dynamics of team coordination. 

In this paper, we present an approach that goes beyond the aggregate-
static concept of team coordination by focusing on the dynamics. The objectives 
of this paper are to: (a) point out limitations of the traditional, aggregate-static 
approach to team coordination; (b) develop an alternative dynamical approach 
for studying team coordination; (c) report the results of an experiment in which 
we analyze team coordination using our dynamical approach; and (d) discuss the 
implications for team coordination research and training adaptive teams. 

Traditional Approaches to Team Coordination and Their Limitations 

The traditional approach to team coordination views effective 
coordination as the product of a shared mental model. A mental model is a 
representation that allows an individual to describe, explain, and predict the 
behavior of a system (Rouse & Morris, 1986). It is believed that through 
common, overlapping knowledge, individual mental models sum to form a 
shared mental model (Cannon-Bowers, Salas, & Converse, 1993). Relevant to 
team coordination, it is further believed that the development of a “shared” 
mental model allows team members to anticipate each other’s needs in order to 
coordinate implicitly, without the need for explicit interaction (Entin & Serfaty, 
1999; Stout, Cannon-Bowers, Salas, & Milanovich, 1999).  

What it means to share a mental model varies from completely identical 
to complementary models. To quantify a shared mental model, the knowledge 
taken from one team member can be compared to the knowledge taken from 
another team member for commonality (Langan-Fox, Code, & Langfield-Smith, 
2000). Common knowledge is aggregated into a pooled estimate, independent of 
team member roles. The limitation of taking this aggregate approach is that 
differences in relations between team member roles do not factor into the 
aggregate. Consider the surgical example: the aggregate assumption means that 
a more effective team has nurses, doctors, and an anesthesiologist with more 
knowledge in common. But should we expect the doctors and the nurses to 
know the same things? The reason for putting together a team of specialists is to 
maximize specialty knowledge and communication of that knowledge, rather 
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than common knowledge. Further, even if the doctors and nurses share the same 
mental model of the task, but interact poorly, then as a team they may not be 
able to perform the task. 

In addition to being aggregated across team members, traditional 
measures of team coordination are aggregated across time, producing a static 
measure of coordination. For example, team coordination has been studied in 
dynamic task environments by looking at communication events averaged over 
time (e.g., anticipation ratios; Entin & Serfaty, 1999; MacMillan, Entin, & 
Serfaty, 2004). This practice suggests that a mean coordination pattern is the 
norm and deviations are not structured but random (e.g., Wang, Klienman, & 
Luh, 2001). Similarly, single observer ratings over long periods of aircrew task 
performance have been used to judge overall quality of coordination (e.g., 
Brannick, Prince, Prince, & Salas, 1995). In the surgical example, this suggests 
that the team performs the “average” behavior in any situation. However, 
fluctuations may be revealing of important trends; behaviors that look the same 
on average may actually differ in important ways (e.g., an increasing trend 
versus a decreasing trend versus a sinusoidal oscillation). More important than 
the average behavior is how that behavior is tied to the dynamics of the task 
environment (Manser, Howard, & Gaba, 2008). For example, the surgical team 
that coordinates the same way during a routine procedure and during a 
procedure anomaly (e.g., sudden drop in heart rate) could lose their patient. 

It is precisely the details of mutual adjustment to a changing 
environment that are needed to capture team coordination. Thus, the dynamics 
of team member interaction and the types of environmental dynamics to which 
the team is subjected must both be considered. Tools of nonlinear dynamical 
systems (NDS) are appropriate because they give us more than an aggregate 
concept of coordination and allow us to observe significant differences in 
patterning that can be washed out by static measures such as the mean behavior. 

Team Coordination Dynamics 

Guastello and colleagues (e.g., Guastello & Guastello, 1998; Guastello, 
Bock, Caldwell, & Bond, 2005; Guastello & Bond, 2007) have investigated the 
dynamics of group coordination. Groups differ from teams because their 
members perform the same functions. Guastello, et al.’s paradigm is based on a 
task from game theory: the intersection game. The intersection game is similar 
to a four-way traffic stop at which drivers must decide who goes through next. 
The drivers are not told explicitly in what order they should proceed. In the 
laboratory version, four group members must decide the order in which they 
should lay down playing cards to match an unspoken “coordination rule” set by 
experimenters (e.g., that a higher card must follow a lower card). After each 
hand, the group receives feedback regarding how closely they matched the 
coordination rule, and then another hand is played. Over a series of hands, a 
stable equilibrium state (a point attractor) matching the coordination rule is 
reached. When the coordination rule changes, then re-acquisition of a new point 
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attractor occurs. It has been observed that groups transfer coordination learning 
to new rules and that acquisition of the new coordination rule is faster than the 
original rule. 

The intersection paradigm clearly is not static because it focuses on 
how groups learn to implicitly coordinate over time. However, there are features 
of this paradigm as currently formulated that limit its usefulness for studying the 
dynamics of team coordination. First, because the paradigm focuses on groups 
with homogeneous members, it does not matter who lays down a particular card 
or when group members interact (Guastello et al., 2005; Guastello & Guastello, 
1998). Second, the interpretation of coordination learning as reaching a stable 
equilibrium state (point attractor) may be an artifact of slow sampling rate; 
within each hand there may be interesting, higher-dimensional dynamics 
occurring. Another interpretation is that the group is matching its coordination 
dynamics to environmental dynamics, but the environment itself is not very 
dynamic (i.e., the slowly changing coordination rule). If the environment were 
more dynamic, then coordination learning may appear to be a more complicated 
attractor (e.g., a limit cycle), as the team continuously matches its coordination 
dynamics to those of the changing environment. We will employ a highly 
dynamic task environment in which the goal of achieving a fixed coordination 
strategy (a point attractor) would be highly unstable. We will look for different 
attractors using a data extraction method called attractor reconstruction. 

Our approach, which is inspired by Haken’s synergetics (1977), is to 
capture coordination at the team level where it fundamentally resides (as 
opposed to aggregating a score) and to observe how that team coordination 
evolves under different conditions and environmental dynamics. Capturing 
coordinated behavior explicitly at the team level requires specification of an 
order parameter that captures the current state of coordination and allows for 
fluctuations over time under varying task conditions. Changes to the order 
parameter occur in the context of changes in a control parameter and in 
response to perturbations. In the remainder of this section, we describe the order 
parameter, control parameter, perturbations, and NDS methods that are 
appropriate for the study of team coordination. 

Order Parameter 

Dynamical modeling of any system requires the identification of an 
appropriate level of analysis for the behavior of interest that captures the 
interactions of system components. In the field of motor coordination, for 
example, the relative phasing φ of two components (limbs) is a well-known 
order parameter that characterizes monofrequency coordination patterns and has 
given rise to over two decades of research on coordination dynamics (Amazeen, 
Amazeen, & Turvey, 1998; Fuchs & Jirsa, 2008; Haken, Kelso, & Bunz, 1985; 
Kelso, 1984; 1995).  

To capture coordination at the team level, we developed a team 
coordination order parameter, κ. The components of coordination (ei) that rest at 
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the level just below the level of analysis (the team level) are functions that each 
team member performs individually but that the team assembles dynamically. 
The value of κ depends on the timing of interactions among the components of 
coordination. The relative onset times of three-component coordination is given 
by: 

E ≡ e1 < e2 < e3 (1) 

The components e1, e2, and e3 are not arbitrary but are relations between 
different team member functions. In the present paper, the ei are defined as 
specific types of communications performed by three team members: 
Information (e1); Negotiation (e2); and Feedback (e3). Only one temporal order 
satisfies E. However, variability within the temporal order specified by E 
captures fluctuations in team coordination. Relative to E, the time intervals (e3 – 
e1) and (e3 – e2) are the metrics for calculating κ: 

κ = 
23

13

ee
ee

-
-  (2) 

The numerator and denominator in Eq. 2 are both time intervals (e.g., seconds); 
therefore, κ is a dimensionless quantity. κ indicates qualitative differences in 
coordination: 
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κ > 1 indicates that the component events have occurred in the proper order, κ < 
1 indicates that the component events have not occurred in the proper order 
(e.g., e2 occurs before e1), and κ = 1 is the coordination boundary. The dynamics 
of team coordination result from variations within and between κ states. Later, 
we present the method of generating and analyzing the dynamics of κ using a 
repetitive team task in which three components of coordinated action (i.e., 
InformationàNegotiationàFeedback) are required for each repetition. Next, we 
describe two ways in which we will influence κ variability and, thus, team 
coordination dynamics. 

Control Parameter 

 One way in which variations in κ can be influenced is through the 
manipulation of a control parameter, whose continuous scaling is accompanied 
by discontinuous (qualitative) change in the value of the order parameter. Group 
member familiarity, which has been studied previously using Guastello’s 
paradigm (Guastello et al., 2005), can be treated as a control parameter. We will 
examine κ dynamics at the extremes of team member familiarity: with team 
members who are either familiar or unfamiliar with each other. 
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Perturbations  

A second way in which we will influence κ variability is by perturbing 
team coordination. Perturbations are informative because a team with unstable 
coordination dynamics may not recover from the perturbation, whereas a team 
with stable coordination dynamics will recover. In the present study, we will 
examine κ with respect to perturbations called roadblocks, which are 
environmental threats to coordination that teams must overcome. 

Nonlinear Dynamics Methods  

Dynamical similitude is the idea that systems with different material 
substrates can have the same dynamics. We capitalized on dynamical similitude 
between team coordination and more frequently studied dynamical systems in 
order to select appropriate NDS methods. 

We have suggested that team coordination is not a point attractor. It is 
continuously evolving and effortful. Team coordination can be thought of as a 
balancing act in which the team must continuously match its dynamics to the 
demands of the environment in order to remain stable. Drawing on dynamical 
similitude, stabilization of an unstable system is found in Center of Pressure 
(COP) postural dynamics (e.g., Collins & De Luca, 1993) and manually 
balancing an inverted pendulum (Treffner & Kelso, 1999). In those dynamical 
systems, the globally stable state is resting in a horizontal position on the 
ground. However a metastable state emerges as the active components of the 
system (e.g., posture; hands) actively counter the forces that pull the upright 
human, or pendulum, to the ground. Similarly, team coordination can be thought 
of as the stabilization of an inherently unstable system by the effortful 
component of the system: team member interaction. The globally stable state is 
uncoordinated, which naturally results if the team members do not interact or do 
not interact effectively. A metastable coordinated state is achieved by the mutual 
effort of the interacting team members to coordinate their actions to the 
changing demands of the environment. Techniques used for analyzing these 
types of systems include attractor reconstruction (Abarbanel, 1996), stability 
analysis (Rosenstein, Collins, & De Luca, 1993), and long-range correlation 
(Hurst, 1951). We do not provide the details of those analytical techniques in 
this paper but will identify a general framework for their application to team 
coordination dynamics: 

Attractor reconstruction (Abarbanel, 1996) was used to embed our 
(scalar) κ time series (κ) in an appropriate multidimensional space in order to 
examine the dynamics (the attractor). We did not necessarily expect differently-
sized attractors for different teams. However, we used the vectors of the 
reconstructed attractor to estimate the largest Lyapunov exponent (λ1; Wolf, 
Swift, Swinney, & Vastano, 1985; Rosenstein et al., 1993) in order to evaluate 
team coordination stability. λ1 < 0 is indicative of more stable team 
coordination, and λ1 > 0 is indicative of unstable team coordination; λ1 ≈ 0 is 
indicative of parallel trajectories or flow (Kantz & Schreiber, 1997). We 
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expected λ1 > 0 for unstable teams whose behavior was easily disrupted by 
roadblock perturbations.  

Long-range correlation was examined by analysis of the Hurst 
exponent (H; Hurst, 1951), which measures dependence over time scales (Beran, 
1994; Eke, Herman, Kocsis, & Kozak, 2002). Our assumption was that 
fluctuations in k would exhibit different types of long-range correlation. H > 0.5 
indicates a persistent (positively-correlated) process; H < 0.5 indicates an 
antipersistent (negatively-correlated) process; and H = 0.5 indicates a random 
process with independent observations. COP trajectories are persistent over 
shorter time scales, as people spontaneously “drift” from upright posture, but 
antipersistent over longer time scales as the standing person “corrects” to an 
upright posture (Collins & De Luca, 1993; see also Treffner & Kelso, 1999). 
Riley, Wong, Mitra, and Turvey (1997) characterized postural drift as 
exploratory: the short-term drift provides information about the standing 
person’s relationship to the environment (exploration) that their body acts on in 
the long-term.  

We will also use the term “exploration” instead of “drift” to 
characterize persistent team coordination. Like COP trajectories, we propose 
that team coordination can exhibit exploration-correction but that the boundary 
between exploration and correction differs depending on the qualities of the 
team. In the current study, we propose that the transition from exploration to 
correction depends on the familiarity of team members. 

The Current Study 

We analyzed the κ order parameter by manipulating the team 
familiarity control parameter—completely familiar (Intact) versus completely 
unfamiliar (Mixed)—in a three-member Uninhabited Air Vehicle (UAV) 
simulator. The goal of a UAV team is to coordinate in order to take 
reconnaissance photographs of ground targets. Roadblocks were introduced in 
order to perturb the UAV teams’ coordination dynamics. The UAV task is 
highly dynamic because the conditions under which targets are photographed are 
never identical and because roadblock perturbations introduce unexpected 
changes into the task environment. Ideally, coordination should vary with 
changes in the task environment (i.e., κ should fluctuate). However, we also 
expect different patterns in the κ series depending on team familiarity. Counter 
to the traditional assumption that team coordination is a static phenomenon, we 
hypothesized that mean κ would not reveal significant differences but that 
differences would be captured in the κ dynamics. 

Hypothesis 1  

Analysis of mean κ will fail to reveal familiarity differences. 

Guastello et al. (2005) found that complete unfamiliarity resulted in the 
biggest disruption of group coordination. Building on that result, we 
hypothesized that mixing team membership would serve to disrupt team 
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coordination just enough to enable the Mixed teams to find better coordination 
patterns. That hypothesis is similar to a hill climbing algorithm in which the 
system is jostled from a local maximum in order to find a global maximum 
(Busemeyer, Swenson, & Lazarte, 1986). Conversely, without this disruption, 
we expect that the Intact teams would rigidly correct to the same coordination 
dynamics. 

Hypothesis 2 

Because they are more rigid, Intact teams should exhibit corrective 
coordination dynamics (antipersistence; H) that Mixed teams do not. 

Although rigidity may be appropriate for a totally stationary, 
unchanging environment, rigid coordination (i.e., ending up with the same 
coordination dynamic regardless of changing task conditions) becomes unstable 
in the face of a dynamic task environment. To the degree that team coordination 
dynamics do not match the dynamics of the task environment, teams become 
unstable with respect to the current coordination demands. 

Hypothesis 3 

Because they are less rigid, Mixed teams should have more stable 
coordination dynamics than Intact teams, as indexed by λ1. 

Due to the inverse theoretical relationship between recovery from 
perturbation and stability, teams with higher stability should also overcome 
more roadblocks. The relationship between stability and the dynamics of the 
environment can be captured by the correlation between stability and number of 
roadblock perturbations overcome. 

Hypothesis 4 

The number of roadblocks overcome should be negatively correlated 
with λ1, i.e., more stable teams overcome more roadblocks. 

METHOD 

Participants 

Forty-five three-person teams (135 participants) were recruited for 
participation from Mesa, AZ and surrounding areas. None of the three team-
members had any prior experience working together. Participants ranged in age 
from 18 to 58 (M = 26) and 96 were male. Participants were randomly assigned 
to one of three team member roles (described below) and one of two familiarity 
conditions (Intact or Mixed). The experiment occurred over two sessions. 
Twenty of the 45 teams from the first session were assigned to new teams 
(Mixed) for the second session. The remaining 20 teams were Intact. Five teams 
did not return for the second session. One Intact team was dropped due to poor 
team performance, which was defined as greater than two standard deviations 
below  the  grand  mean  of team performance; N = 39  teams.  Participants were  
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Fig. 1. Coordination log interface for one target; check boxes were used to 
record timestamps for the coordination components: Information (e1), Negotiation 
(e2), and Feedback (e3). 
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paid $30 after the first session and $70 after the second session. A $100 bonus 
was paid to each member of the highest performing team. 

Materials and Apparatus 

The experiment was conducted in a UAV synthetic task environment 
(Cooke & Shope, 2005). This experiment was part of a larger study, details of 
which can be found in Cooke et al. (2007). The UAV team’s task was to take 
reconnaissance photographs of ground targets over a sequence of 40-minute 
simulated missions. There were 11-12 targets per mission. The three team 
members each had a different role: pilot, navigator, or photographer. Each of the 
three team members was seated at a workstation that consisted of three computer 
monitors, a keyboard, and a mouse. Each team member’s monitors displayed 
both role-specific (different for each team member) and common (the same for 
each team member) information regarding vehicle speed, altitude, and course 
bearing. The three workstations were located in the same room. Team members 
wore aviation quality, noise-canceling headsets and communicated by holding 
down push-to-talk buttons. After each mission, teams received performance 
feedback based on how many targets were successfully photographed, the 
amount of resources used (e.g., fuel, film), and the number of UAV warnings or 
alarms (e.g., low fuel). 

As teams photographed each target, their communications were 
monitored by an experimenter for specific interactions using coordination 
logging software (see Fig. 1). Specific interactions for each target corresponded 
to the components (ei) of coordination as described in Eq. 1: navigator providing 
information about the target (e1); pilot and photographer negotiating UAV speed 
and altitude for the target (e2); and photographer providing feedback on the 
status of the target photograph (e3). When these interactions occurred for each 
target the experimenter checked the appropriate box. The timestamps associated 
with these interactions were used to calculate a κ for each target using Eq. 2. 
 During each mission, an experimenter presented the team with a 
situation awareness roadblock (Cooke, Gorman, & Rowe, 2009; Gorman, 
Cooke, & Winner, 2006). The roadblock was a novel change in the task environ-
ment that disrupted team coordination (i.e., e1 à e2 à e3) during routine task 
performance (e.g., taking a photograph). Roadblocks were related to enemy 
activity, the appearance of unmarked targets on the navigator map, or communi-
cation glitches. These roadblocks mimic unwanted sources of novelty in actual 
UAV operations that operators must overcome. In the communication glitch, for 
example, communications were cut from one team member to another for five 
minutes, such that communication had to be rerouted through the other team 
member to overcome the roadblock. The number of roadblocks successfully 
overcome (scored “yes/no” as judged by experimenters) was recorded. Number 
of roadblocks overcome for each session was calculated for each team. 
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Procedure 

Participation occurred across two sessions. Session 1 consisted of five 
UAV missions. This was followed 3 to 13 weeks later by Session 2, which 
consisted of three UAV missions. Teams who returned for Session 2 were either 
Intact (same team members) or Mixed (different team members). Retention 
interval was also manipulated in this experiment but its analysis is not relevant 
to the current experimental questions. 

Coordination was logged for each target of each mission, and κ series 
were generated across all Session 1 and Session 2 targets. Roadblock 
perturbations were introduced during each mission in order to measure the total 
number of roadblocks overcome by each team during each experimental session. 

Dynamical Systems Algorithms 

Programs for attractor reconstruction, the largest Lyapunov exponent, 
and Hurst exponent were developed in Matlab, a mathematical programming 
language, using algorithms that are widely available in the NDS literature (see 
Kantz & Schrieber, 1997 for a general overview of the algorithms). The method 
of attractor reconstruction (Abarbanel, 1996) was used to reconstruct a 
dynamical attractor for each κ. The algorithm has two steps: (a) identification of 
the time delay τ at which the observations of κ are maximally independent and 
(b) using the τ-lagged coordinates of κ to identify the embedding dimension dE. 
We estimated τ as the first local minimum of the average mutual information 
(AMI) function (Fraser & Swinney, 1986) and dE as the number of τ-lagged 
coordinates at which the percentage of false nearest neighbors (FNN; Kennel, 
Brown, & Abarbanel, 1992) reached zero or a global minimum. We used the 
vectors from each team’s reconstructed attractor to calculate λ1 using Rosenstein 
et al.’s (1993) algorithm (see also Kantz, 1994). 

We used rescaled-range analysis (R/S; Hurst, 1951) to estimate H. 
Following the procedure used for postural and inverted pendulum balancing 
dynamics (Collins & De Luca, 1993; Treffner & Kelso, 1999), we tested for two 
(exploratory: H > 0.5; and corrective: H < 0.5) linear regions, separated by an 
inflection point. The inflection point was estimated by refitting H with 
increasing time scale in order to identify the first minimum R2 for each κ, which 
is the inflection point (Treffner & Kelso, 1999). When an inflection point was 
identified, separate H estimates were obtained for the linear regions before 
(short-region H) and after (long-region H) the inflection point. 

RESULTS 

In order to ensure the quality of the components of κ, the inter-rater 
reliability of the time-stamped coordination components of the coordination log 
(Fig. 2) were evaluated. Independent logs were obtained for a subset of UAV 
missions (N = 35) by having an independent experimenter log DVD recordings 
of those missions. The Intraclass correlation coefficient indicated good 
reliability, ICC = .67, F (3511, 3511) = 3.05, p < .001. 
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Fig. 2. Representative κ series for (a) Intact and (b) Mixed teams; three Session 
1 κ series for Mixed teams, graphed using differently shaded lines, come from 
each of the original Session 1 teams. Vertical arrows indicate the introduction of 
roadblock perturbations. 

Representative κ series over Session 1 and Session 2 are plotted in Fig. 
2. Note that there is one κ for Session 1 for the Intact teams (Fig. 2a) and there 
are three κ for Session 1 for the Mixed teams (Fig. 2b). This is because in 
Session 1, prior to the change in familiarity, each Mixed team member came 
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from a different team; all three teams from which team members came are 
depicted in Fig. 2b. During Session 2, there was only one κ for each team. Our 
analyses will focus on Session 2 in order to compare Intact to Mixed team 
coordination dynamics. 

The arrows on the abscissa of Fig. 2 correspond to the introduction of 
roadblock perturbations. In response to the roadblocks, the κ demonstrated 
large, brief fluctuations. Notice that (for Session 2) these fluctuations tended to 
be larger for Intact teams than for Mixed teams. This trend suggests that 
roadblock perturbations did not affect the κ trajectory for Mixed teams (stable 
dynamics) as much as for Intact teams (unstable dynamics). Inspection of the κ 
series were followed by analysis of mean κ over time in order to determine if 
these differences were captured by a traditional analysis. 

Traditional Analysis 

For Session 2, mean κ for Intact teams (M = 3.63, SD = 2.99) was not 
significantly different than mean κ for Mixed teams (M = 6.00, SD = 9.82), t 
(37) = -1.01, ns. Thus, the static approach did not reveal any significant 
differences between Intact versus Mixed team coordination. 

Dynamical Analyses 

To match the order of hypotheses in the introduction, the dynamical 
results are presented in the following order: attractor reconstruction; Hurst 
analysis; and stability analyses. 
 Attractor reconstruction was performed on each Session 2 κ series. 
Time lag (M = 2.10, SD = 1.12) and dimensionality (M = 4.72, SD = .92) did not 
differ between Intact and Mixed teams, t(37) = -.55, ns and t(37) = 1.18, ns, 
respectively. However the time evolution of trajectories as captured by the 
attractors of Fig. 3 indicated very different dynamics. Intact teams had more 
complicated coordination dynamics than Mixed teams. Intact team coordination 
was focused on a small part of phase space, departures from which were met by 
corrections back to this familiar part of the space (Fig. 3a). The Mixed team 
attractor was comparatively simple and could be characterized as continuous 
exploration of a wider range of phase space (Fig. 3b). 
 The Hurst analysis employed the use of multiple time scales to estimate 
long-range correlation in the κ series. Seven κ series (five Intact and two Mixed) 
were dropped from the Hurst analysis because they were critically shorter (two 
fewer time scales) than the rest and so could not be considered in the same 
analysis as the other (n = 32) κ series. [Note: N = 39 for all other analyses.] For 
testing the exploration-correction hypothesis, a value of H > 0.5 was used to test 
for exploration before the inflection point and H < 0.5 was used to test for 
correction after the inflection point. Mean H values across teams in each 
condition are depicted in Fig. 4. Intact teams demonstrated a clear inflection 
point (M = 14.12 targets, SD = 4.10, mean R2 = .96). For those teams the short-
region H exhibited exploration (M = .91,  SD  =  .06),  t(13)  =  27.20,  p  <  .001  
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Fig. 3. Reconstructed attractors from (a) Intact and (b) Mixed team coordination. 
 
(one-tailed), d = 7.27 and the long-region H exhibited correction (M = .34, SD = 
.29), t (13) = -2.01, p < .05 (one-tailed), d = -.54. That is, Intact teams used a 
strategy that was exploratory across small time scales and corrective across long 
time scales. That pattern supports the interpretation of Fig. 3 and mimics the 
standard finding for COP dynamics and manual control of inverted pendulums. 
In contrast, Mixed teams demonstrated no clear inflection point and a single-
region H > 0.5 over all timescales (M = .80, SD = .07), t(17) = 18.16, p < .001 
(one-tailed), d = 4.34.  Thus, Mixed  teams  displayed  only  exploration,  as  ob- 
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Fig. 4. Mean Hurst exponents for Intact and Mixed teams (95% confidence 
intervals). 
 

 
Fig. 5. Mean Intact and Mixed largest Lyapunov exponents λ1 (95% confidence 
intervals). 
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served in Fig. 3. The possibility remains that an inflection point, and a corrective 
strategy, may exist for Mixed teams at time scales that are larger than the 
longest sampling window in the experiment. 

Mean λ1 values across teams in each condition are depicted in Fig. 5. A 
value of λ1 = 0 was used as the null hypothesis. Intact teams demonstrated 
unstable coordination dynamics (M = .03, SD = .05), t(18) = 2.45, p < .05 (two-
tailed), d = .56. Mixed teams were not significantly different from λ1 = 0 (M = -
.01, SD = .04), t(19) = -.74, ns, but an independent samples t-test revealed that 
Mixed teams were more stable than Intact teams, t(37) = 2.39, p < .05 (two-
tailed), d = .79. As was suggested by the κ series of Fig. 2 and indicated in the 
attractors of Fig. 3, the exploratory dynamics exhibited by the Mixed teams’ 
attractor were more stable in this highly dynamic UAV task environment than 
were the corrective dynamics of Intact teams. 

Validity Tests 

How was stability, or lack of stability, related to the dynamics of the 
task environment? Environmental change was experimentally introduced using 
the roadblock perturbations. In order to ensure the quality of the roadblock data, 
inter-rater reliability of judgments of roadblocks overcome was evaluated. 
Independent ratings were obtained from a subset of UAV missions (N = 35) by 
having an independent experimenter rate DVD recordings of the missions. The 
Intraclass correlation coefficient indicated good reliability, ICC = .86, F(33, 33) 
= 7.24, p < .001. 

There was a significant negative correlation between stability and 
number of roadblocks overcome, r(37) = -.36, p < .05. As expected, teams with 
higher stability (i.e., more negative λ1) also overcame more roadblocks. This 
result supports the common notion from the dynamical literature that the ability 
to handle dynamical uncertainty in the environment is related to maintaining 
stable coordination dynamics. 

Surrogate Analyses 

Surrogate analyses are conducted to address the possibility that the 
observed dynamics were an artifact of short time series (Delignieres, 
Deschamps, Legros, & Caillou, 2003) or occurred randomly. Observed κ were 
compared to randomly shuffled surrogates of the observed κ. Surrogate analysis 
(Theiler, Eubank, Longtin, Galdrikian, & Farmer, 1992) is a bootstrapping 
method that represents a more stringent null hypothesis for presence of 
significant dynamical structure than comparison to a theoretical value alone 
(e.g., H > 0.5; λ1 = 0). Ten randomly shuffled surrogates were generated for each 
κ. Each surrogate had the same marginal statistical properties (mean, variance) 
as its parent κ but was randomly sequenced. Single-region H (inflection points 
were not estimated) and λ1 estimates were compared for all observed and 
surrogate κ. Two paired-sample t-tests (one for H and one for λ1) were 
conducted. The observed H values (M = .80, SD = .08) were significantly larger 
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than the mean surrogate values (M = .74, SD = .03), t(38) = 5.59, p < .001 (one-
tailed), d = .90. The absolute values of the observed λ1 (M = .04, SD = .04) were 
also significantly larger than the mean absolute surrogate values (M = .02, SD = 
.02), t(38) = 2.97, p < .01 (two-tailed), d = .48. Therefore the observed dynamics 
were not artifacts of short or noisy κ. 

DISCUSSION 

Team coordination has traditionally been studied from an aggregate-
static approach. This approach, however, fails to capture important changes in 
team coordination as teams adjust to meet the changing demands of their 
environment. In the current study we examined team coordination using 
principles of NDS. We hypothesized that team coordination should exhibit 
important changes in variability based on changes in team member familiarity 
and perturbations; averaging coordination behavior over time should wash out 
these influences. An order parameter (κ) was used to capture the target-to-target 
variability in team coordination. In support of Hypothesis 1, average κ failed to 
reveal differences between Intact and Mixed teams. The aggregate-static 
approach thus failed to reveal differences that were captured using NDS 
methods. 

The Hurst analysis was used to calculate long-range correlations, 
specifically patterns of exploration and correction, in κ. The analysis revealed 
that Intact teams displayed exploration and correction, but Mixed teams 
displayed only exploration. Corrective behavior was demonstrated graphically in 
Fig. 3a: the Intact attractor focused on a relatively small region of phase space, 
and when Intact teams did depart from this region, they subsequently corrected 
back to this small region of phase space. The Mixed attractor of Fig. 3b 
encompassed approximately the same proportion of phase space as the Intact 
attractor, but was comparatively simple: the Mixed attractor resembled a 
periodic dynamic that consistently explored the phase space without correcting 
back to a preferred region. Thus, Intact teams were rigidly bound to a particular 
range of κ that Mixed teams were not. This result provides support for 
Hypothesis 2. 

The exploration-correction hypothesis was based on the dynamics of 
stabilization, similar to COP trajectories (e.g., Collins & De Luca, 1993) and 
manual control of inverted pendulums (e.g., Treffner & Kelso, 1999). The 
exploration-correction of the Intact teams was more similar to standard findings 
in the stabilization literature than the exploration-only dynamics of the Mixed 
teams. Treffner and Kelso (1999) described a “jiggling” and “running” strategy 
for the manual control of an inverted pendulum, which produces exploration-
correction dynamics similar to those of the Intact teams. In the jiggle-run 
strategy, a human controller jiggles the bottom of the pendulum in an attempt to 
stabilize the pendulum in an upright position. Eventually, balance at the jiggle-
point is lost and an episode of running occurs. During running, the controller 
corrects back to a central location at which a new bout of jiggling occurs. The 
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jiggle-run strategy does not produce stable, fixed point dynamics but chaotic and 
intermittent dynamics, which are unstable. Treffner and Kelso (1999) did not 
describe a run-only strategy for manual control of an inverted pendulum. 
However, using their language the simple periodic dynamic of the Mixed teams 
could be interpreted as a controlled run that explores the same amount of phase 
space as the Intact teams, but results in more globally stable coordination 
dynamics. 

We checked the stability of those dynamics by calculating the largest 
Lyapunov exponent, λ1. Consistent with the patterns of stabilization, the 
controlled exploration of the Mixed teams was more stable than the corrective 
dynamics of the Intact teams, as indexed by λ1. This result provides support for 
Hypothesis 3. By continuously exploring, the Mixed teams were better able to 
maintain stability as they adapted to the dynamics of the task environment, 
namely, roadblocks. Based on existing dynamical literature and theory we 
hypothesized that this higher stability would be correlated with a greater number 
of roadblocks overcome. In support of Hypothesis 4, λ1 was negatively 
correlated with number of roadblocks overcome indicating that more stable 
teams (i.e., Mixed teams) overcame more roadblocks. 

The dominant view in the shared mental model literature is that the 
teams who worked together longer (i.e., Intact teams) should have coordinated 
more effectively (Smith-Jentsch, Kraiger, Cannon-Bowers, & Salas, 2009). 
However, the Mixed teams exhibited greater flexibility and adaptability; this 
was obviously not accomplished by a prolonged period of working together. A 
more plausible explanation is that the process of mixing team members jostles 
team coordination from a locally-optimal attractor, moving teams through a 
coordination attractor landscape (see below) to find a more globally-optimal 
coordination attractor. This is similar to concepts from both computational 
modeling and motor learning. In computational modeling, a method called hill 
climbing is used to shake up a settled system resulting in a more globally-
adaptive solution. Relatedly, it is common in the motor learning literature to 
introduce variability in the execution of a task to improve transfer following 
skill acquisition. In this case the result was the more flexible, yet stable, team 
coordination dynamics exhibited by the Mixed teams. But will mixing team 
membership always result in more effective team coordination? The answer may 
be “no” if the task has only one fixed solution that needs to be followed like a 
recipe (e.g., Malone & Crowston, 1994). 

We have argued that teams must not only be able to interact effectively 
under routine conditions; they must also be able to adjust their coordination to 
meet the changing demands of their environment. One could argue, however, 
that if the task is highly routine (e.g., following a check list), then a team that is 
well-rehearsed and does not deviate from procedure can coordinate more 
effectively than a newly formed team that has to relearn the procedure each time 
team membership changes. Thus, for a totally fixed, unchanging task, mixing 
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team membership could be detrimental to team coordination. Although the idea 
of a totally fixed environment is somewhat of a straw man, mixing group 
membership has been found to disrupt group coordination even in a slowly 
evolving task environment (Guastello et al., 2005), which is likely closer to 
reality than a totally fixed environment. The current results have greater 
applicability to changing (dynamic) task environments. In the next section we 
consider the implications for training teams to perform at a high level under both 
routine and novel task conditions. 

Implications for Training Adaptive Teams 

The traditional approach suggests training interventions that focus on 
building a shared mental model to improve coordination. However the evidence 
shows that teams or groups whose membership is based on the same view of the 
world will tend to display rigid behavior regardless of changing environmental 
demands (e.g., “groupthink;” Janice, 1972; see also Katz, 1982). Those 
observations are theoretically aligned with our result that mixing team members 
leads to more adaptive team coordination. Counter to the traditional approach, 
our mixing results suggest that interventions that “jostle” team coordination into 
new patterns improve coordination by allowing teams to escape rigid patterns 
and ultimately become more flexible and adaptive. We hypothesize that this can 
be accomplished not just by mixing team members, but also by directly 
multiplying the amount and types of coordination experiences to which the team 
is exposed using perturbations. 

In the current study, we created flexible teams by changing team 
membership and we probed their flexibility by introducing roadblock 
perturbations, but we have been developing training strategies for creating 
flexible teams without the need for changing team membership by introducing 
perturbations during task acquisition. We have been conducting UAV team 
training experiments in which perturbation training is compared to traditional 
team training (e.g., cross-training for a shared mental model; Cannon-Bowers, 
Blickensderfer, & Bowers, 1998). Following training, the teams must perform 
under both routine and novel situations. Our results thus far indicate that 
perturbation training methods are superior to training methods that focus on 
development of a shared mental model for training adaptive teams and with no 
loss in routine performance (Gorman, Cooke, & Amazeen, in press). 

Although perturbation training has been successful for training adaptive 
teams, an important question that remains is whether or not the concepts of team 
coordination dynamics apply to more than just the three-person UAV teams 
described here. Teams can be much larger than three members and they can 
form to solve many problems beyond the sequenced command-and-control of 
the UAV task of the present study. In the remainder of this section we extend the 
notions of order parameters, control parameters, and NDS methods beyond the 
three-person UAV teams described here. 
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Extensions of Team Coordination Dynamics 

Order Parameters  

The power of the order parameter is that pattern formation at the team 
level exerts causal constraint on—“enslaves” (Haken, 1977)—the local 
interactions of the team members. Under Haken’s slaving principle, 
coordination need not be described in terms of independent component behavior 
because the components are constrained to act as a single functional unit. The 
order parameter captures patterns that are dynamically assembled at the 
component level and exhibit coordination at the system level. The patterns 
revealed in our analyses of κ spanned large timescales of UAV operations (i.e., 
long-range correlations) across several missions, which suggests that the team 
members were likely unaware of the patterns exhibited at the level of the order 
parameter even though their interactions were constrained by those patterns. 

Possible extensions of the order parameter concept include the ability 
to scale quantities like κ to larger team sizes. Although κ was mapped in two 
dimensions (a slope) in principle it could be mapped to a much higher 
dimension (a gradient). The traditional view does not scale as teams grow in size 
because the goal of a shared mental model becomes unreasonable. Alternatively, 
the slaving principle entails that coordination of system components is captured 
by the dynamics of the order parameter. Thus coordination across many-
component systems can be captured in a relatively low dimension once the order 
parameter has been identified. 
 The components of coordination (i.e., e1, e2, e3) for the UAV task were 
sequenced according to relational constraints, but system components need not 
be sequenced for the order parameter concept to apply. More generally, 
coordinated behavior across homogeneous components can produce emergent 
pattern formation. For instance, although group members are not constrained to 
interact in a particular sequence, the work by Guastello and colleagues (1998, 
2005, 2007) shows that group coordination can exhibit emergent pattern 
formation as control parameters (e.g., level of verbalization; group familiarity) 
are adjusted. 

Control Parameters 

The attractor landscape can be altered as a function of changes in the 
value of the control parameter. This is demonstrated in Fig, 3, in which the only 
difference between Intact and Mixed teams was the value of the team familiarity 
control parameter. In our study, exploration-correction was the most stable 
attractor for completely familiar teams whereas exploration-only was the most 
stable attractor for completely unfamiliar teams. The most stable mode was not 
determined by familiarity but rather the NDS of team interaction. Thelen and 
Smith (1996) referred to this as the non-specificity of the control parameter: 
team coordination was not encoded in the level of familiarity; the stable pattern 
emerged strictly from the NDS of the system. This also means that different 
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dynamics may exist at the midpoint between totally intact and totally mixed 
teams, that is, if we had set the system up differently. These dynamics could be 
revealed by continuously adjusting, or scaling, the control parameter. 

An example of an independent variable (IV) from team coordination 
research that can be continuously scaled is level of workload. Treated as an IV, 
increased workload is thought to cause teams to shift explicit to implicit 
coordination (Entin & Serfaty, 1999). Another interpretation is that implicit 
coordination is more attractive under increased workload and that explicit 
coordination is more attractive under decreased workload. Treated as a control 
parameter, continuous scaling of workload may yield new insights into the 
explicit-implicit coordination distinction. One possibility is the revealing of 
hysteresis effects (Gilmore, 1981). That is, the transition from explicit to 
implicit coordination may occur at one level of workload when workload is 
increased, but the transition back to explicit coordination may not occur at the 
same level of workload as workload is decreased. The presence of a hysteresis 
effect is a clear reminder that the coordinated response is not directly specified 
by the control parameter. 

As workload, or any other control parameter, is scaled we must 
consider that the coordinated response emerges from team member interactions. 
This calls for appropriate NDS methods to capture coordinated and other team 
responses that emerge from team member interaction in a dynamic environment. 

NDS Methods 

 Dynamical similitude is the principle that systems with different 
material substrates can exhibit the same dynamics. This principle can be used to 
guide selection of appropriate NDS methods for a system that has not been 
previously analyzed using a dynamical approach. We chose attractor 
reconstruction, stability analysis, and long-range correlation for this study but 
other methods may be more appropriate for other team tasks. For example, in 
addition to team coordination we also study teams that perform collaborative 
planning tasks and have observed that such teams can exhibit simultaneous, 
nested threads of interaction suggestive of fractal dynamics (Gorman, Cooke, 
Amazeen et al., 2009). Fractal dynamics are those found in scale invariant 
processes, such as the human heartbeat, in which behavior at small time scales 
resembles behavior at larger time scales, i.e., when you magnify a fractal the 
pattern looks the same (Eke et al., 2002). An appropriate NDS method for 
analyzing fractal dynamics of heart rate variability is the power spectral density 
– the log-log slope of the frequency content of inter-heartbeat intervals. Based 
on the principle of dynamical similitude, power spectral density is an 
appropriate NDS method for examining collaborative planning behavior—for 
example, frequency content by topic—in teams. 

A reasonable goal for any team is to continuously achieve a match 
between coordination dynamics and the dynamics of the environment. To date, 
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all NDS analyses are conducted post hoc but there are situations, like the 
surgical team from the introduction, in which it would be advantageous to 
identify a team’s dynamical patterns in real time. We are currently developing 
real-time methods for the exponents described in the present study (i.e., H; λ1) 
and other exponents such as the power spectral density. Ultimately, real-time 
NDS methods would allow us to detect and intervene in real time in the case of 
anomalous matches between team dynamics and environmental dynamics. 

Conclusion 

 It is not enough to simply assemble a collection of experts to 
accomplish a team task because team members have to coordinate their actions. 
The team must not only coordinate effectively during routine procedures; they 
must also be able to adapt to the changing demands of their environment. Tools 
of NDS are appropriate for understanding team coordination phenomena 
because they give us more than an aggregate-static snapshot of team-member 
interaction. The dynamical approach that we have described here may provide 
new answers for traditional problems such as how to train an adaptive team that 
aggregate-static approaches do not. 

Mark Twain once wrote that “history does not repeat itself, but it often 
rhymes.” Put differently, the present is not the same as the past, but there is an 
undeniable flow that unifies them into a single coherent history—a rhyme. Like 
a rhyme, the essence of coordination is in the flow across time of relations 
across the constituent parts, not the individual parts themselves. The goal of the 
team coordination dynamics approach is to look for that rhyme. 
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